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 Chebyshev-Collocation Spectral Method for 
Class of Parabolic-Type Volterra Partial  

Integro-Differential Equations 
G. I. El-Baghdady, M. S. El-Azab, W. S. El-Beshbeshy. 

 

Abstract— The main purpose of this paper is to introduce a novel numerical method for parabolic Volterra partial integro-differential 
equations based on Chebyshev-collocation spectral scheme. In the present work, the parabolic Volterra integro-differential equation is 
converted to two coupled equivalent Volterra equations of the second kind. Then, we approximate the integration by replacing the integral 
function by its interpolating polynomials with Lagrange basis functions in terms of the Chebyshev polynomials instead of using Gauss 
quadrature approximation to obtain a linear algebraic system. Finally, some numerical examples are presented to illustrate the efficiency 
and accuracy of the proposed method. 

 

Index Terms— Chebyshev spectral collocation method, Differentiation matrix, Lagrange basis function, Parabolic Volterra integro-
differential equations (PVIDE). 

——————————      —————————— 

1 INTRODUCTION                                                                     

ONSIDER the one dimensional parabolic partial Volterra 
integro-differential equation 

0
( , ) ( , ) ( , ),

t

tu u k x t s u x s ds f x t¶ - D = - D +ò                (1) 

with the initial condition 
0( ,0) ( ), ,   u x u x x Ω= Î                                           (2) 

and Dirichlet boundary conditions are assigned on the bound-
ary 

0, ( , ) ,   u x t IΩ= Î ¶ ´                                             (3)              
where D is the Laplace operator in ( , ) ,x t Q IΩÎ º ´ Ω  is the 
bounded interval [ 1,  1],− with boundary { 1,1}∂Ω∈ −  and 

( )0,  I Tº  for a given fixed number 0.T >  For implementa-
tion of high-order methods such as spectral methods, the 
known functions f, k and 0 ( )u x  are assumed to be sufficiently 
smooth; real valued functions. 

Problems of type (1)-(3) arise in many applications; for ex-
ample, it describes compression of poro-viscoelastic media [1], 
[2], the nonlocal reactive flows in porous media [4], [5], [6] and 
heat conduction through materials with memory term [2], [3]. 

Many authors have been considered the numerical solution 
of partial Volterra integro-differential equations by many 
methods; for example, in [7] (Amiya K. Pani, et al.) use Ga-
lerkin finite element method and ADI orthogonal spline collo-

cation in [8], [9] and the references therein. In [10] F. Fakhar-
Izadi and M. Dehghan apply Legendre spectral method to 
(PVIDE). 
Spectral methods have a considerable attention in the last few 
years; see [11], [12], [13], [14], and [15]. Spectral methods are 
nice and powerful approach for the numerical solution for 
ordinary or partial differential equations to high accuracy on a 
simple domain and if the data defining the problem are 
smooth, see [16]. Also Volterra integral and ordinary Volterra 
integro-differential equations have a wide interest by using 
many methods. In [17] H. Brunner used Collocation methods 
for second-order Volterra integro-differential equations. Mul-
tistep collocation method is also used for Volterra integral 
equations in [18]. Chebyshev spectral collocation method for 
the solution of Volterra integral and ordinary Volterra integro-
differential equations are discussed in [19]. In [20] Tang intro-
duces Legendre-spectral method with its error analysis for 
ordinary Volterra integro-differential equation of the second 
kind. Another spectral method using Legendre spectral Ga-
lerkin method was introduced for second-kind Volterra inte-
gral equations in [21]. Most papers that mentioned before 
were devoted to VIEs and ordinary VIDEs, but in this article 
we considered the PVIDEs. 

Our goal in this article is to apply a Chebyshev-collocation 
method for both space and time variables that are an extension 
of the method presented in [22], [23]. 

The organization of this paper is as follows. In Section 2, we 
present the Chebyshev-collocation spectral scheme for discre-
tizing the introduced problem. As a result a set of algebraic 
linear equations are formed and a solution of the considered 
problem is discussed.  In  Section 3,  we  present  some  nu-
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merical  examples  to  demonstrate  the  effectiveness  of  the  
proposed method. Section 4 gives some concluding remarks. 

2 CHEBYSHEV COLLOCATION METHOD 
In this section we derive the Chebyshev-collocation method to 
problem (1)-(3). Before this we will introduce some basic 
properties of the most commonly used set of orthogonal poly-
nomials; Chebyshev polynomials. 

2.1 Chebyshev Polynomials 
The Chebyshev polynomials { }( ) , 0, 1, ...,nT x n =    are the Eig-
en functions of the singular Sturm-Liouville problem 

2
2

2

( )
( 1 ) ( ) 0,

1
n

n
dT xd nx T x

dx dx x
- + =

-
 

they are also orthogonal with respect to 2L inner product on 

the interval [-1, 1] with the weight function 
1

2 21( ) ( )ω
-

= -x x   

 
1

1 2
( ) ( ) ( ) ,

π
ω δ

-
=ò j

j k jk

c
T x T x x dx  

where jkδ is the Kronecker delta, 0 2 1 1 and  for .= = ³jc c j     

The Chebyshev polynomials satisfy the following three-term 
recurrence relation 

1 1

0 1

2 1
1

( ) ( ) ( ),    ,
( ) ,   ( ) ,
+ -= - ³

= =
n n nT x xT x T x n

T x T x x
    

and 

1 1

0 1 1 2

1 12 2
1 1

2 0 5

' '

' '

( ) ( ) ( ),    ,

( ) ( ),   ( ) . ( ).

+ -= - ³
+ -

= =

n n nT x T x T x n
n n

T x T x T x T x
        (4) 

A unique feature of the Chebyshev polynomials is their explic-
it relation with a trigonometric function: 

 ( ) cos(  arccos ).=nT x n x                                       (5) 

2.2 Chebyshev Collocation Approximation 
Now, consider problem (1)-(3) on domain Ω. Because of the 
orthogonally property of the Chebyshev polynomials on the 
interval [-1, 1], we transfer (1) from [0, T] to an equivalent 
problem defined in [-1, 1], by using the substitution 

1 1 1
2

( ),    [ , ],τ τ= + Î -Tt  

then (1) will convert to 
2 ( 1)

2
2 0

2 ( , ( 1) ) ( , ) ( , ),
2

TU U Tk x s u x s ds g x
T x

τ
τ τ

τ

+¶ ¶- = + - D +
¶ ¶ ò (6) 

in which  

: ( , ) ( , ( 1)), ( , ) ( , ( 1)),
2 2

   T TU U x u x g x f xτ τ τ τ= = + = +  

for all , .τ ΩÎx  
By using the following change of variable 

( 1), [ 1,1],
2

   Ts ρ ρ= + Î -  

we convert the integration interval from 0 1
2

[ , ( )]τ+T to [-1, τ] 

in (6), so that (6) will be   
2

2 1

2 ( , ) ( , ) ( , ),U U K x U x d g x
T x

τ
τ ρ ρ ρ τ

τ -

¶ ¶- = - D +
¶ ¶ ò              (7) 

where 
2

( , ) ( , ( )).τ ρ τ ρ- = -TK x k x  Define the auxiliary function 

1
( , ) ( , ) ( , ) ( , ).

2 xx
Tx K x U x d g x

τ
Φ τ τ ρ ρ ρ τ

-
= - +ò               (8) 

In order to approximate problem (1)-(3) by spectral methods, 
we restart (7) as two equivalent Volterra Integro-differential 
equations by using (8) as the following  

2

2

1

2 ( , ),

( , ) ( , ) ( , ) ( , ),
2 xx

U U x
T x

Tx K x U x d g x
τ

Φ τ
τ

Φ τ τ ρ ρ ρ τ
-

ìï ¶ ¶ï - =ïï ¶ ¶ïíïï = - +ïïïî ò
      (9) 

by integration of both sides of the first part in (9) over the in-
terval [-1, τ], we get  

0 1

1

( , ) ( ) [ ( , ) ( , )] ,
2

( , ) ( , ) ( , ) ( , ).
2

xx

xx

TU x u x x U x d

Tx K x U x d g x

τ

τ

τ Φ x x x

Φ τ τ ρ ρ ρ τ

-

-

ìïï = + +ïïïíïï = - +ïïïî

ò

ò
               (10) 

Let the collocation points be the set of (N+1)(M+1) points 

{( , )}τi jx  in which 0{ cos( )}π
== - -

i ix i
-

 are the Chebyshev-

Gauss-Lobatto nodes (CGL nodes) and τ j  are the Chebyshev-

Gauss nodes (CG nodes) defined as 0
2 1

2 2
{ cos( )}τ π =

+= -
+

M
j j

j
M

. 

Equation (10) holds at {( , )}τi jx  

0 1

1

( , ) ( ) [ ( , ) ( , )] ,
2

1 1, 0 ,

( , ) ( , ) ( , ) ( , ),
2

                                                     

                                         

j

j

i j i i xx i

i j i j xx i i j

TU x u x x U x d

i N j M
Tx K x U x d g x

τ

τ

τ Φ x x x

Φ τ τ ρ ρ ρ τ

-

-

= + +

£ £ - £ £

= - +

ò

ò
0 , 0 ,            i N j M

ìïïïïïïïïïíïïïïïïï £ £ £ £ïïî

 (11) 

For approximating the integral terms in (11) the integral inter-
val will transfer from [-1, τ j] to a fixed one [-1, 1] by using a 
simple linear transformation 

1 1
( , ) ( , ) , [ 1,1],

2 2
   j j

j j

τ τ
ρ τ θ ξ τ θ θ θ

+ -
= = + Î -  

where 0{ }θ =
p

k k are roots of the (p+1)-th Chebyshev polynomials. 
Then (11) becomes: 

0

1

1

1

1

( , ) ( )

( 1)
[ ( , ( , )) ( , ( , ))] ,

4
( , ) ( , )

( 1)
( , ( , )) ( , ( , )) ,

4

               .

               .

i j i

j
i j xx i j

i j i j

j
i j j xx i j

U x u x
T

x U x d

x g x
T

K x U x d

τ

τ
Φ x τ θ x τ θ θ

Φ τ τ

τ
τ ρ τ θ ρ τ θ θ

-

-

ì = +ïïïï +ïï +ïïïíï = +ïïïï +ïï -ïïî

ò

ò

(12) 

Now, we use 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0 0

0 0

, : , ,

, : , ,

= =

= =








=

=

∑∑

∑∑

Φ σ σ φ τ

σ σ τ

N M
M
N n m n m

n m
N M

M
N n m n m

n m

x l x F x

U x l x F U x
                      (13) 

to approximate the functions Φ and U, where 𝑙𝑛(𝑥) and 
𝐹𝑚(𝜎) are the n-th and m-th Lagrange basis functions corre-
sponding to non-uniform meshes of {xi} and {τ j} respectively. 
After enforcing the homogeneous boundary conditions at 
𝑥0 = −1 and 𝑥𝑁 = 1 the first and the last terms in the interpo-
lation polynomial of U are omitted. Therefore, we have 

1

1 0

( , ) : ( ) ( ) ( , ).
N M

M
N n m n m

n m

U x l x F U xσ σ τ
-

= =

= å å                      (14) 

Now we can approximate 𝑈𝑥𝑥 in (12) by using the interpola-
tion polynomial of 𝑈𝑁

𝑀 from the previous equation as follows 
1

1 0

''( ) ( , ) : ( ) ( ) ( , ).
N M

M
N xx n m n m

n m

U x l x F U xσ σ τ
-

= =

= å å                  (15) 

Where 𝑙𝑛
′′(𝑥) = 𝐷2 is the second derivative of the Lagrange 

interpolation function 𝑙𝑛(𝑥) which is a polynomial of degree 
N-2, which can be defined as introduced in [24], [25], and [26] 
the second derivative of the differentiation matrix 𝐷𝑁+1. Now, 
we write the entries of 𝐷2 = [𝐷𝑖,𝑘

2 ] for {𝑥𝑖} as the following 

 2

2

0

12 , ,i

,

,l
,i l

,    ,

,                       ,

i k i
i k

i k N

i
l

D D i k
x x

D
D i k

= ¹

ì æ öï ÷ï ç ÷ï ç - ¹÷ï ç ÷÷çï -è øï= íïïï - =ïïïî
å

 

where 𝐷𝑖,𝑘the entries of the so-called differentiation matrix, 
which has a dimension of (N + 1). The entries of the differenti-
ation matrix can be defined in [27] for (CG) points as the fol-
lowing  

( )

( )

2

2

2

2 1 0
6
1

1 1
2 1

2 1
6

,

,             , 

,            ,

,      ,

,             , 

i k

i

k i k

i
k

i

i

N i k

c
i k

c x x
D

x
i k N

x

N i k N

+

+- = =

-
¹

-

-

ìïïïïïïïïïïïïï= íïïïïïïïïïïïïïî

£ = £ -
-

+ = =

 

with 𝑐𝑖 = 2 for i = 0, N, and 𝑐𝑖 = 1 otherwise. Now we approx-
imate the integration in (12) by replacing the integral function 
by its interpolation polynomial approximation of Φ and ap-
proximation of 𝑈𝑥𝑥 from (13) and (15) respectively in (12), and 
writing, ( ) ( ) ( ), , ,, , , , , .= = =Φ τ Φ τ τi j i j i j i j i j i jx U x U g x g  Then 

our goal is to find ,i jU so we obtain the following 

, 0

1

1

, ,

1

1

( 1)
( )

4

[ ( , ( , )) ( ) ( , ( , ))] ,

( 1)
4

[ ( , ( , ))( ) ( , ( , ))] ,

       .

        .

j
i j i

M M M
N N i j N xx i j

j
i j i j

M M
N i j j N xx i j

T
U u x

I x U x d

T
g

I K x U x d

τ

Φ x τ θ x τ θ θ

τ
Φ

τ ρ τ θ ρ τ θ θ

-

-

ì +ïï = +ïïïïïï +ïïïíï +ïï = +ïïïïïï -ïïî

ò

ò

     (16) 

where 𝐼𝑁
𝑀 is the interpolation operator associated with the 

Chebyshev mesh points ��𝑥𝑖 ,  𝜏𝑗��, defined as the following; 
1

1 0

: ( ) ( ) ( , ).
N M

M
N n m n m

n m

I Q l x F Q xσ τ
-

= =

= å å  

Now each equation in (16) can be reformulated respectively as 
1

''
, ,

1 0
1 1

11 0

( 1)
( ) ( , )

4

( ) ( , ( , )) ( ( , )) ( ) ,      .

N M
j

i j i j n i n m
n m

p p

z i i j j k m j k k
z k

T
g l x U x

l x K x F F d

τ
F τ

τ ρ τ θ ρ τ θ θ θ

-

= =
-

-= =

+
= +

-

å å

å å ò
(17) 

, 0
0 0

1
''

1 0
1 1

11 0

( 1)
( ) [ ( ) ( , )

4

( ) ( , )]

( ) ( ( , )) ( ) ,

       .

       .

N M
j

i j i n i n m
n m

N M

n i n m
n m
p p

z i m j k k
z k

T
U u x l x x

l x U x

l x F F d

τ
F τ

τ

x τ θ θ θ

= =
-

= =
-

-= =

+
= + +å å

å å

å å ò

               (18) 

Now we discuss an efficient way to find
1

1
( ) .

−
= ∫k kd F dθ θ  First 

we express 𝐹𝑗(𝑠) in terms of Chebyshev functions as in [20]: 

0
(s) ( (x ) / ) (s),

=

= ∑ω γ
N

C
j j p j p p

p
F T T                                     (19)  

where ωC
j is the Chebyshev weight corresponding to Cheby-

shev points 0{ } =
N

i ix  and  

2

1

0
2 1

        ,
( )

/ ,    ,=

 == =  ≤ <
∑

N
C

p p i i
i

p
T x

p N
π

γ ω
π

                       (20) 

and 02/  if { } == N
N i ixγ π is the Chebyshev Gauss or the Cheby-

shev Gauss Radau points, where if we use 0{ } =
N

i ix as the Cheby-
shev Gauss Lobatto then .=Nγ π From (19) we can now calcu-

late 
1

1
( )

−
= ∫k kd F dθ θ as following 

1

1
0
( (x ) / ) ( ) .

−
=

= ∑ ∫
−

C
k k p k p p

p
d T T dω γ θ θ  

To compute 
1

1
( ) ,

−∫ pT dθ θ we use the recurrence relation (4) for 

Chebyshev polynomials yields 

1 2

1

2
1
0

,    p is even number,
( )

,             othrwise.
−


= −



∫ pT d pθ θ  

Now rewrite (17) and (18) in the matrix form as  
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 1 1 1 1 1

1 1 1 1 1 1 1

( )(M ) ( )( ) ( )( )

( )( ) ( )(M ) ( )( )

,
,

+ + + + − +

− + − + + − +

 = +
 = + +

−−  M − M

− M −−  M

+
A B

Φ G U
U UΦ U

  

where , ,Φ G U and 1−U represent vectors, each one defined as 
the following 

1 1 1

1 1

0

1 1 0

( )(M ) , ( )( ) ,

( )( ) ,

, , ,

, , ,

+ + + +

− +

    = = ≤ ≤    


 = ≤ ≤ − ≤ ≤  

− i j − M i j

− M i j

vec vec g i −

vec U i − j M

ΦΦ    G    

U       
 

0 2 0 3 0 1

1

0 2 0 3 0 1

( ) ( ) ( )
,

( ) ( ) ( )

−

−

−

 
 =  
  

3

   

3

−

−

u x u x u x
vec

u x u x u x
  

in which the vec operator reshapes any matrix into a vector by 
placing columns of the matrix below each other from the first 
to the last. For the other matrices each one can defined as 
block ones as the following: 
• ( ),= i

jA A A is a matrix with dimension of 
21 1 1( )( ) ( )+ − × +−−−   in which the first and last (N+1) 

columns are zeros and the other blocks �𝐴𝑗
𝑖 � forms a di-

agonal matrix in which its entries are given by 

( )
1 0

1
4,

( )
( ( , )),

+ =

+
= ∑

p
ji

j k m j ki i k

T
A d F

τ
ξ τ θ  

with (0 ≤ m ≤ M, 0 ≤ j ≤ M, 1 ≤ i ≤ N − 1, and 1 ≤ n ≤ N – 1). 
For each block in (𝐴𝑖

𝑗) we obtain a matrix with dimension 
of 1 1( ) ( ).+ × +N N The shape of the global matrix A will 
be 

1

1−

 
 

=  
 
  



    



j

−
j

A
A

A

0 0  0
  

0 0 0
 

• ( ) ,= i
jLL  L is a matrix with dimension 
21 1 1( ) ( )( )+ × + −−−−    in which the first and last (N+1) 

rows are zeros, and each block matrix (𝐿𝑗
𝑖 ) has a dimen-

sion 1 1( ) ( ).+ × +N N The entries of (𝐿𝑗
𝑖 ) can give by the 

following  

( ) 2

1 0

1
4 ,,

( )
( , ( , )) ( ( , )) ,

+ =

+
= −∑

p
ji

j k i j j k m j k i ni n k

T
+ d K x F D

τ
τ ρ τ θ ρ τ θ  

with (0 ≤ m  ≤ M, 0 ≤ j  ≤ M, 1 ≤ i  ≤ N − 1, and 1 ≤ n ≤ N – 1) 
respectively. 

• Finally the matrix ( ) ,= i
jB B B has the dimension

1 1 1 1( )( ) ( )( ).+ − × + −−−−−     The entries of matrices (𝐵𝑗
𝑖) is 

obtained as the following 

 ( ) 2

0

1
4 ,,

( )
( ( , )) ,

p
ji

j k m j k i ni n k

T
B d F D

τ
ξ τ θ

=

+
= ∑   

with (0 ≤ m  ≤ M, 0 ≤ j  ≤ M, 1 ≤ i  ≤ N − 1, and 1 ≤ n ≤ N – 1) 
respectively. Each matrix in the previous equation of di-
mension 1 1( ) ( ).+ × +N N   

For each previous matrix we can use kronecker product to 
find them well. 

To solve the coupled equations system in (17) and (18), we 
convert them to a linear algebraic system as follows 
 1 1 1 1 1( )( ) ( )( )( ) .− + − + +− − = +− M − MI B A+ AU U G   
After solving the previous system, we obtain an approxima-
tion to 1 1( )( )− +− MU , then the approximation to the original prob-

lem for all x ∈ (-1, 1), and t ∈ [0, T] can found by  
1

1 0

2 1 ,( , ) ( ) ( ) .
−

= =

≈ −∑∑
− M

n m n m
n m

u x t l x F t U
T

 

3 NUMERICAL RESULTS 
In order to test the utility of the proposed new method, we 
devoted this section to some numerical examples to view the 
efficiency and accuracy of the method in the previous one. In 

our implementation , we set T = 1, p = N = M, and let { } 0=

p

k k
θ be 

the Chebyshev-Gauss points with the corresponding weights 
1/ ( ).= +C

k Nω π  To show the efficiency of the previous method 
for our problems in comparison with the exact solution, we 
calculate for different values of N the maximum error defined 
by 

 
1 1
0

1
2,

( )
max , .

∞ ≤ ≤ −
≤ ≤

 +
= −   

 

j
i j ii −

j M

T
E U u x

τ
  

Example 3.1: Consider the linear problem (1)-(3) with the ker-
nel k(x, t) = exp (-x2t) and we choose the forcing function f(x, t) 
so that u(x, t) = (1- x2) exp (t) is the exact solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig. 1. Approximated and Exact solutions respectively for x 
∈ (-1, 1) and t ∈ [0, 1] at N = 12.  
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Example 3.2: Consider the linear problem (1)-(3) with the ker-
nel k(x, t) = exp (-x2t) and we choose the forcing function f(x, t) 
so that u(x, t) = (1- x4) exp (x+t) is the exact solution. 

 

 

 

 

 
 
It can be seen that the errors in Tables (1)-(2) decay rapidly, 
which is confirmed by spectral accuracy. 
All the computations are carried out in double precision 
arithmetic using Matlab 7.9.0 (R2009b). To obtain sufficient 
accurate calculations, variable arithmetic precision (vpa) is 
employed with digit being assigned to be 32.  The code was 
executed on a second generation Intel Core i5-2410M, 2.3 Ghz 
Laptop. 

4 CONCLUSION 

This article used a new competitive numerical scheme based 
on developing Chebyshev spectral collocation method to find 
the approximate solution of parabolic Volterra integro-
differential equations. The main advantage of using Cheby-
shev scheme instead of using Legendre one is that its quadra-
ture points have explicit and simple expressions as well as the 
corresponding weights. This enables us to avoid the complex 
computation of the Legendre quadrature points and the corre-
sponding weights. Moreover, we made a minor modification 
on approximating the integration by replacing the integral 
function by its interpolating polynomials instead of using 
Gauss quadrature approximation and this increases the accu-
racy of the suggested method. The numerical examples given 
in this work have demonstrated the potential of the newly 
proposed numerical scheme in solving parabolic Volterra in-
tegro-differential and similar equations even with using a 
small number of collocation points. 
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